Systems Biology Analysis of Zymomonas mobilis ZM4 Ethanol Stress Responses
نویسندگان
چکیده
BACKGROUND Zymomonas mobilis ZM4 is a capable ethanologenic bacterium with high ethanol productivity and ethanol tolerance. Previous studies indicated that several stress-related proteins and changes in the ZM4 membrane lipid composition may contribute to ethanol tolerance. However, the molecular mechanisms of its ethanol stress response have not been elucidated fully. METHODOLOGY/PRINCIPAL FINDINGS In this study, ethanol stress responses were investigated using systems biology approaches. Medium supplementation with an initial 47 g/L (6% v/v) ethanol reduced Z. mobilis ZM4 glucose consumption, growth rate and ethanol productivity compared to that of untreated controls. A proteomic analysis of early exponential growth identified about one thousand proteins, or approximately 55% of the predicted ZM4 proteome. Proteins related to metabolism and stress response such as chaperones and key regulators were more abundant in the early ethanol stress condition. Transcriptomic studies indicated that the response of ZM4 to ethanol is dynamic, complex and involves many genes from all the different functional categories. Most down-regulated genes were related to translation and ribosome biogenesis, while the ethanol-upregulated genes were mostly related to cellular processes and metabolism. Transcriptomic data were used to update Z. mobilis ZM4 operon models. Furthermore, correlations among the transcriptomic, proteomic and metabolic data were examined. Among significantly expressed genes or proteins, we observe higher correlation coefficients when fold-change values are higher. CONCLUSIONS Our study has provided insights into the responses of Z. mobilis to ethanol stress through an integrated "omics" approach for the first time. This systems biology study elucidated key Z. mobilis ZM4 metabolites, genes and proteins that form the foundation of its distinctive physiology and its multifaceted response to ethanol stress.
منابع مشابه
Correction: Systems Biology Analysis of Zymomonas mobilis ZM4 Ethanol Stress Responses
Copyright: ß 2014 The PLOS ONE Staff. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
متن کاملEngineered Zymomonas mobilis for salt tolerance using EZ-Tn5-based transposon insertion mutagenesis system
BACKGROUND The cell growth and ethanol yield of Zymomonas mobilis may be detrimentally affected by salt stress frequently present in some biomass-based fermentation systems, leading to a decrease in the rate of sugar conversion to ethanol or other bioproducts. To address this problem, improving the salt tolerance of Z. mobilis is a desirable way. However, limited progress has been made in devel...
متن کاملFinished Genome of Zymomonas mobilis subsp. mobilis Strain CP4, an Applied Ethanol Producer
Zymomonas mobilis subsp. mobilis is one of the most rigorous ethanol-producing organisms known to date, considered by many to be the prokaryotic alternative to yeast. The two most applied Z. mobilis subsp. mobilis strains, ZM4 and CP4, derive from Recife, Brazil, and have been isolated from sugarcane fermentations. Of these, ZM4 was the first Z. mobilis representative strain to be sequenced and...
متن کاملElucidation of Zymomonas mobilis physiology and stress responses by quantitative proteomics and transcriptomics
Zymomonas mobilis is an excellent ethanologenic bacterium. Biomass pretreatment and saccharification provides access to simple sugars, but also produces inhibitors such as acetate and furfural. Our previous work has identified and confirmed the genetic change of a 1.5-kb deletion in the sodium acetate tolerant Z. mobilis mutant (AcR) leading to constitutively elevated expression of a sodium pro...
متن کاملUsing global transcription machinery engineering (gTME) to improve ethanol tolerance of Zymomonas mobilis
BACKGROUND With the increasing global crude oil crisis and resulting environmental concerns, the production of biofuels from renewable resources has become increasingly important. One of the major challenges faced during the process of biofuel production is the low tolerance of the microbial host towards increasing biofuel concentrations. RESULTS Here, we demonstrate that the ethanol toleranc...
متن کامل